XVIII Open Cup named after E.V. Pankratiev. Grand Prix of Urals¶
排名 | 当场过题数 | 至今过题数 | 总题数 |
---|---|---|---|
60/201 | 5 | 8 | 11 |
A¶
solved by JJLeo
题意¶
题解¶
B¶
solved by 2sozx
题意¶
求满足对于 \(\forall i \in [L, R]\) 有 \((i \bmod Q)\bmod x = i\bmod x\) 的 \(x\) 的数量,\(1 \le L, R, Q\le 10^{12}\)
题解¶
显然 \(Q > R\) 时有无穷解。
考虑 \(Q \le R\) 。
- 先考虑单独的 \(s \in [L, R]\) 。
\((s - (s \bmod Q)) \bmod x = 0\) ,显然 \(x\) 应该是 \(s - (s - \bmod Q) = Q\lfloor\dfrac{s}{Q}\rfloor\) 的因子。
- 若 \(\lfloor\dfrac{L}{Q}\rfloor = \lfloor\dfrac{R}{Q}\rfloor\) ,显然答案即为 \(Q\lfloor\dfrac{L}{Q}\rfloor\) 的因子个数。
- 否则答案 \(x\) 则为 \(x | Q\times gcd(\lfloor\dfrac{L}{Q}\rfloor, \lfloor\dfrac{L}{Q}\rfloor + 1, \dots, \lfloor\dfrac{R}{Q}\rfloor)\) ,显然 \(x | Q\) ,即答案为 \(Q\) 的因子个数。
C¶
solved by JJLeo
题意¶
题解¶
D¶
upsolved by
题意¶
题解¶
E¶
upsolved by
题意¶
题解¶
F¶
upsolved by
题意¶
题解¶
G¶
upsolved by
题意¶
题解¶
H¶
solved by JJLeo
题意¶
Claris yyds!CSK yyds!
题解¶
Claris yyds!CSK yyds!
I¶
upsolved by
题意¶
题解¶
J¶
upsolved by
题意¶
题解¶
K¶
solved by JJLeo Bazoka13 2sozx
题意¶
题解¶
记录¶
总结¶
啊啊,一体机测si!