跳转至

XVIII Open Cup named after E.V. Pankratiev. Grand Prix of Urals

排名 当场过题数 至今过题数 总题数
60/201 5 8 11

A

solved by JJLeo

题意

题解

B

solved by 2sozx

题意

求满足对于 \(\forall i \in [L, R]\)\((i \bmod Q)\bmod x = i\bmod x\)\(x\) 的数量,\(1 \le L, R, Q\le 10^{12}\)

题解

显然 \(Q > R\) 时有无穷解。

考虑 \(Q \le R\)

  • 先考虑单独的 \(s \in [L, R]\)

\((s - (s \bmod Q)) \bmod x = 0\) ,显然 \(x\) 应该是 \(s - (s - \bmod Q) = Q\lfloor\dfrac{s}{Q}\rfloor\) 的因子。

  • \(\lfloor\dfrac{L}{Q}\rfloor = \lfloor\dfrac{R}{Q}\rfloor\) ,显然答案即为 \(Q\lfloor\dfrac{L}{Q}\rfloor\) 的因子个数。
  • 否则答案 \(x\) 则为 \(x | Q\times gcd(\lfloor\dfrac{L}{Q}\rfloor, \lfloor\dfrac{L}{Q}\rfloor + 1, \dots, \lfloor\dfrac{R}{Q}\rfloor)\) ,显然 \(x | Q\) ,即答案为 \(Q\) 的因子个数。

C

solved by JJLeo

题意

题解

D

upsolved by

题意

题解

E

upsolved by

题意

题解

F

upsolved by

题意

题解

G

upsolved by

题意

题解

H

solved by JJLeo

题意

Claris yyds!CSK yyds!

题解

Claris yyds!CSK yyds!

I

upsolved by

题意

题解

J

upsolved by

题意

题解

K

solved by JJLeo Bazoka13 2sozx

题意

题解

记录

总结

啊啊,一体机测si!

Dirt

回到页面顶部